Learning from Easy to Complex:

Adaptive Multi-curricula Learning for Neural Dialogue Generation

¹Hengyi Cai, ²Hongshen Chen, ¹Cheng Zhang, ¹Yonghao Song, ¹Xiaofang Zhao, Yangxi Li, Dongsheng Duan, ²Dawei Yin

¹Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; ²JD.com

Motivation

Background:

- Current state-of-the-art neural dialogue systems are mainly data-driven and are trained on human-generated responses.
- Due to the subjectivity and open-ended nature of human conversations, the complexity of training dialogues varies greatly.
- The noise and uneven complexity of query-response pairs impede the learning efficiency and effects of the neural dialogue generation models.

Data Analysis: Curriculum Plausibility (Q1)

What defines the dialogue complexity?

Complexity quantification using conversational attributes: Specificity, Repetitiveness, Query-relatedness, Continuity, Model Confidence.

Low	Do you have any pets?	High	<i>I win competitions.</i>	Easy
Specificity	I do not. Do you?	Ouerv-relatedness	<i>What kind of competitions do you win?</i>	
High	What kind of books do you read?	Low	I love art projects, including photography.	Complex
Specificity	Tom clancy n some james patterson	Query-relatedness	Definitely. I am so tired though.	
P 1.0- 0.8-	ersonaChat Dail	2Dialog	OpenSubtitles Dataset: PersonaChat [Zhang DailyDialog [Li et al. 2017], [Lison and Tiedemann 2016].	et al. 2018a], OpenSubtitles

Research Questions:

- 1. Conversation complexity embodies multiple aspects of attributes. How to quantify the dialogue complexity?
- 2. Babies learn to converse in an easy-to-complex manner and dynamically adjust their learning focus. How to enable the dialogue model imitating such learning behaviors?

Figure 1: Violin plot with whiskers regarding five conversation attributes in three datasets.

- >Outliers frequently appear among all the distributions, which exhibits the uneven dialogue complexity.
- These attributes show little correlations with each other (Kendall correlations among these conversational attributes are near 0).

Single Curriculum Dialogue Learning (Q2)

Complexity is one of [Specificity, Repetitiveness, Query-relatedness, Continuity, Model Confidence].

- \succ The curriculum is arranged by sorting dialogue training set according to the corresponding attribute.
- ▶ Progressing function: $f(t) \triangleq min(1, \sqrt{t\frac{1-c_0^2}{\tau} + c_0^2})$
- \succ At training time step t, a batch of training examples is sampled from the top f(t) portions of the total sorted training samples.
 - **T** is the duration of curriculum learning and c_0 is set to 0.01.
- \succ At the early stage, the model learns from samples drawing from the front part of the curriculum.
- \succ As the advance of the curriculum, the difficulty gradually increases, as more complex training examples appear.

Experiments

Metrics:

- > Dist-n measures the ratio of unique n-grams to the total number of n-grams in a set of responses [Li et al., 2016];
- > Intra-n measures the ratio of unique n-grams within each response [Gu et al. 2019];
- > Embedding Avg, Ext, Gre metrics measuring the similarity between response and target word embeddings [Liu et al., 2016];
- > Coh: Similarity between input and response word embeddings [Xu et al., 2018];
- Ent-n: n-gram entropy of responses [Serban et al., 2017].

Experimental Models:

(1) **SEQ2SEQ**: a sequence-to-sequence model with attention mechanisms (Bahdanau, Cho, and Bengio 2015), (2) CVAE: a conditional variational auto-encoder model with KL-annealing and a BOW loss (Zhao, Zhao, and Esk'enazi 2017), (3) Transformer: an encoder-decoder architecture relying solely on attention mechanisms (Vaswani et al. 2017), (4) HRED: a generalized sequence-to-sequence model with the hierarchical RNN encoder (Serban et al. 2016), (5) DialogWAE: a conditional Wasserstein autoencoder, which models the distribution of data by training a GAN within the latent variable space (Gu et al. 2019).

After training T batches, each batch of training instances is drawn from the whole training set, which

is same as the conventional training procedure without a curriculum.

Adaptive Multi-curricula Learning (Q2)

- Dialogue complexity consists of multiperspectives of attributes.
- Humans usually adjust their learning focus of multiple curricula dynamically in order to acquire a good mark.
- We further introduce an adaptive multi-curricula learning framework, to automatically choose different curricula at different learning stages according to the learning status of the neural dialogue generation model.
- We provide the model with five different curricula, where each curriculum is prepared by ordering training set w.r.t. corresponding attribute metric accordingly.
- Scheduling mechanism acts as the policy π . **State:** the learning status of the dialogue model, including passed mini-batch number, the average historical training loss, etc.

															Training with our method
	Models	BLEU	Dist-1	Dist-2	Dist-3	Intra-1	Intra-2	Intra-3	Avg	Ext	Gre	Coh	Ent-1	Ent-2	- Loss
		0.216	0.2067	2 100	5.026	77.04	87.00	00.72	50.05	47.00	65.01	62.97	6 674	10.269	-
	SEQ2SEQ	0.310	0.3907	2.190	5.020 9.242	//.24 82 74	87.00	90.75	58.85 62.20	47.22	67.07	02.87 66 97	0.074 6 975	10.308	170
	$\frac{SEQ2SEQ(\blacktriangle)}{CVAE}$	0.352	0.5400	3.557	7 7 15	85 30	94.20	95.47	61.00	47.57	66.68	65.27	6 000	10.725	- 150
	CVAE	0.290	0.5550	3.220 A 572	11 326	80.30 80 30	94.09	90.75 08 28	63 08	47.12	67 00	66 81	6.900 6.973	10.758 10.866	150 8e-3
	Transformer	0.321	0.0550	3 264	6 262	83.11	03.82	96.20	50.53	47.57	65 57	62.48	7 160	11 232	- 130 - 6e-3 - 6e-3
(a)	Transformer (A)	0.195	0.7007	<i>J</i> .204 <i>A</i> 201	8.8202	80.11 80 30	95.82	90.4 8	62.33	46 24	66 5 4	65 35	7.109	11.232	4e-3
	HRED	0.323	0.8100	4 217	8 0/18	84.25	97.92	07 10	60.63	45.01	66 33	63 53	7.103	11.551	- 110
	$\frac{111111}{11111}$	0.272	0.8109	5 332	12 281	04.25 91 45	95.20 97 89	98.93	62.25	46 53	66 53	65.33 65.22	7.062	11.149	
	DialogWAE	0.124	0.9594	5 153	11 483	94 35	98.04	98 54	58 98	43 53	63.66	60.93	7 424	11.696	- 90
	DialogWAE (▲)	0.124	1.1388	6.890	15.842	96.65	99.41	99.68	63.81	45.90	65.63	65.63	7.462	11.845	Iterations
(b) T H H H	SEQ2SEQ	0.399	1.542	9.701	22.005	91.10	96.97	98.15	67.50	47.41	68.45	68.39	6.933	10.921	= Distinct
	SEQ2SEQ (\blacktriangle)	0.617	1.846	11.665	25.918	93.28	98.16	99.00	67.75	47.57	68.91	68.94	7.041	11.164	
	CVAE	0.406	1.615	11.187	26.588	90.56	97.48	98.70	67.76	46.82	68.90	67.77	7.124	11.308	0.024
	CVAE (▲)	0.691	1.890	13.125	30.793	94.48	98.88	99.47	67.8 1	47.36	69.00	68.00	7.139	11.453	0.02
	Transformer	0.412	2.617	13.212	25.175	90.50	96.53	97.92	65.82	46.01	67.86	66.03	7.192	11.309	
	Transformer (▲)	0.8063	2.917	15.509	30.954	94.38	98.59	99.26	66.52	46.79	68.40	66.65	7.307	11.651	
	HRED	0.1746	2.323	11.563	22.471	94.01	98.45	99.30	65.09	45.91	67.49	65.09	7.141	11.331	0.012
	HRED (\blacktriangle)	0.3834	2.448	12.880	26.355	94.18	98.65	99.36	65.37	46.43	68.14	65.22	7.058	11.341	8e-3
	DialogWAE	0.0303	2.244	12.340	26.109	92.98	98.02	98.78	64.19	42.03	65.52	64.31	7.420	11.954	4e-3
	DialogWAE (▲)	0.0814	2.654	16.311	36.591	92.79	98.73	99.53	65.27	43.41	66.60	65.62	7.539	12.106	
(c) (c)	SEQ2SEQ	0.140	0.3053	2.472	6.377	95.94	97.37	98.34	54.71	49.03	62.87	59.09	6.226	9.516	
	SEQ2SEQ (\blacktriangle)	0.172	0.4870	4.514	12.319	96.67	98.16	98.76	55.87	49.13	63.78	62.65	6.353	10.236	Iterations
	CVAE	0.0522	0.3028	2.614	7.574	95.12	97.32	98.19	56.17	47.70	63.10	58.85	6.156	9.460	-
	CVAE (▲)	0.0429	0.4061	3.928	12.676	96.11	98.09	98.99	57.06	47.85	63.44	60.82	6.463	10.442	Embedding
	Transformer	0.072	0.3883	1.737	3.503	95.38	97.13	98.18	55.10	48.16	62.69	57.45	6.661	10.362	
	Transformer (▲)	0.050	0.5655	3.079	7.005	97.15	98.39	99.11	55.63	48.17	63.16	59.19	6.666	10.715	0.47
	HRED	0.0498	0.3311	1.900	4.465	95.34	97.38	98.15	55.41	48.34	62.79	58.92	6.346	9.715	
	HRED (\blacktriangle)	0.0795	0.6982	4.224	9.933	97.43	98.68	99.20	55.89	48.64	63.53	59.55	6.510	10.409	0.46
	DialogWAE	0.0038	0.4808	3.870	11.856	86.91	93.88	97.93	51.59	43.40	56.23	51.96	5.633	8.559	
	DialogWAE (\blacktriangle)	0.0352	0.7360	6.549	18.881	94.92	97.10	98.14	54.73	47.84	63.52	58.81	6.7859	11.187	0.45

Table 1: Automatic evaluation results (%) on three datasets: (a) PersonaChat, (b) DailyDialog and (c) OpenSubtitles. "▲" denotes training with our proposed framework.

Examples with tail learning frequencies

Context: Ma'am?

Vanilla training

adaptive multi-curricula learning.

iterations

Figure 2: Overview of the proposed adaptive multicurricula learning framework for neural dialogue generation. At training step t, the curriculum policy \blacksquare Action $a_t \in \{0, 1, \dots, k-1\}$ chooses one of chooses one of the curricula to learn and the progressing function defines the learning progress on Maximizing: $J(\theta) = \mathbb{E}_{\pi_{\theta}(a|s)}[R(s,a)].$

the selected curriculum.

Reward *R*: The ratio of two consecutive performance deviations on validation set. the curricula, k = 5.

